Exergy and economic analyses of CCP system using full capacity of steam production and waste heat recovery in Kurdistan petrochemical complex

Author:

Naderi Pak Abbas,Lahonian Mansour,Mirzaei Hooshyar,Aminian Saman,Ranjbari Leyla

Abstract

AbstractThe objective of this study is to analyze a combined cooling and power system from both exergy and economic perspectives, taking into account low-, medium-, and high-pressure steams. The system configuration consists of various components, namely the boiler, tank, turbine, generator, unit referred to as 180, absorption chiller, and separator. The high- and medium-pressure steams are utilized to generate power in the chiller turbine. Additionally, the low-pressure steam, which is discharged from the turbines and recycled from different sections of the system, is used to provide heat for the absorption chillers and cool the water used in the production line, thereby reducing the capacity requirements of the wet cooling towers. Among the available options, the turbine with a cost of 300 €/kW proves to be the most suitable choice for the proposed system. The results indicate that increasing the generator temperature from 65 °C to 90 °C leads to an increase in the coefficient of performance (COP) from 0.67 to 0.77. Moreover, the COP, power production, turbine efficiency, and total exergy efficiency of the proposed system are determined as 0.73, 5000 kW, 16,876 kW, 35.98%, and 57%, respectively. Ultimately, by implementing the proposed system, the product's production has been enhanced by 7% while generating an additional 16 MW of power, which represents a significant capacity for the Kurdistan Petrochemical Complex.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3