Biogenic preparation of biphasic calcium phosphate powder from natural source of snail shells: bioactivity study

Author:

Ofudje Edwin A.ORCID,Akinwunmi Fatai,Sodiya Ezekiel F.,Alayande Samson O.,Ogundiran Abimbola A.,Ajayi Gabriel O.

Abstract

AbstractIn this present work, carbonated apatite powder (CAP) and β-tricalcium phosphate (β-TCP) were prepared from waste snail shells via thermal decomposition followed by chemical precipitation method with phosphoric acid in a one step process. The CAP produced was thereafter reacted with a pore forming agent solution of ammonium bicarbonate to formed carbonated apatite powder- ammonium bicarbonate scaffold composites (CAP-AMB) and was deployed in a bioactivity experiment with simulated body fluid (SBF) media. The phase purity, crystallinity, particle size, thermal behaviour, elemental composition, morphology as well as the functional groups of snail shells, synthesized CAP and CAP-AMB scaffold were assessed by XRD, FE-SEM, TGA, EDX, TEM and FT-IR. XRD and selected area electron diffraction (SAED) results confirmed the synthesized apatite as pure amorphous powder which upon heat treatment, transformed to polycrystalline powder. Analysis of FT-IR results revealed that the apatite produced from snail shells (SS) contains phosphates and hydroxyl functional groups. Furthermore, the formation of carbonated apatite was also confirmed from the FT-IR result with peaks which appeared at 882 and 1484 cm−1 respectively, thus depicting a B-type apatite. Microscopy analyses by FE-SEM and TEM indicated that the prepared apatite is composed of different morphologies in the range of 5 to 200 nm long. The presence of trace elements such as K, C, Na, Mg and Mg which could play crucial functions in biological applications were detected by EDX measurement alongside Ca and P. The mixture of CAP with AMB produced interconnected pores structure with porosity in the range of 35–67%. The bioactivity study of the SBF treated CAP-AMB composite confirmed apatite formation on the scaffold surface which totally covered the pores after seven days of incubation. Thus, waste biomaterial of snail shells origin can be use for the production of pure apatite that could be useful in medical application. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3