Author:
Borode Adeola,Tshephe Thato,Olubambi Peter,Sharifpur Mohsen,Meyer Josua
Abstract
AbstractThis study delves into an extensive investigation of the thermophysical properties and heat transfer efficacy of a hybrid nanofluid incorporating graphene nanoplatelets and γ-Al2O3 nanoparticles dispersed in deionised water. The nanofluids were characterised for their viscosity (µ), thermal conductivity (λ), and electrical conductivity (σ) over a 15–40 °C temperature range for varying nanoparticle loading (0.1–0.4 vol%). The experimental results revealed notable enhancements in µ, λ, and σ with increasing nanoparticle concentration, while µ decreased at elevated temperatures as λ and σ increased. At the highest concentration (0.4 vol%), µ increased by 21.74%, while λ and σ exhibited peak enhancements of 17.82% and 393.36% at 40 °C. An Adaptive Neuro-fuzzy Inference System (ANFIS) model was devised to enhance predictive precision by meticulously optimising the number of membership functions (MFs) and input MF type. The ANFIS architecture that exhibited the most remarkable agreement with the experimental data for µ, λ, and σ was found to utilise the Product of Sigmas, Difference of Sigmas, and Generalized Bell MFs, respectively, with corresponding input MF numbers being 2–3, 3–2, and 3–2. The optimal ANFIS model for µ, λ, and σ exhibits a higher prediction accuracy with an R2 value of 0.99965, 0.99424 and 0.99995, respectively. The Figure of Merit analysis using Mouromtseff Number identified an optimal nanoparticle concentration range of 0.1–0.2 vol% for enhanced heat transfer performance with a reasonable µ increase. This range guides practitioners in utilising hybrid nanofluids effectively while managing potential drawbacks.
Funder
University Research Council, University of Johannesburg
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献