Abstract
AbstractThe impact of rice plant diseases has led to a 37% annual drop in rice production. It may happen basically due to the lack of knowledge in identifying and controlling rice plant diseases, but still there isn’t any proper application has been developed which is capable enough to identify these rice plant diseases accurately and control those diseases. In order to identify rice plant disease by an application itself, Convolutional Neural Networks (CNN) can be used. Many of researchers have used CNNs for plant disease identification because of their accuracy in image identification and classification. But, there’s still a handful researches have been conducted regarding the identification of rice plant diseases. This study provides a comprehensive understanding of current rice plant illnesses as well as the Deep Learning approaches used to detect such diseases. It also analyzes several kinds of techniques that have been employed in the literature by analyzing all of them with their benefits and drawbacks. It has discovered the most accurate ways in all levels of the image identification procedure as a consequence of this research, that will be valuable in recognizing rice plant illnesses.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献