A mixture distributions analysis based feature selection approach for bearing remaining useful life estimation

Author:

Huang FeiORCID,Sava Alexandre,Adjallah Kondo H.,Zhang Dongyang

Abstract

AbstractFeature selection is a difficult but highly important preliminary step for bearings remaining useful life (RUL) estimation. To avoid the weights setting problem in hybrid metric, this work devotes to conduct feature selection by using a single metric. Due to noise and outliers, an existing feature selection metric, called monotonicity, used for estimating bearings RUL, requires data smoothing processing before adequate implementation. Such a smoothing process may remove significant part of meaningful information from data. To overcome this issue, a mixture distribution analysis-based feature selection metric is proposed. Moreover, based on this new metric, a feature selection approach for bearings RUL estimation is proposed. Numerical experiments benchmarking the proposed method and the existing metric monotonicity method on available real datasets highlight its effectiveness.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3