Abstract
AbstractFeature selection is a difficult but highly important preliminary step for bearings remaining useful life (RUL) estimation. To avoid the weights setting problem in hybrid metric, this work devotes to conduct feature selection by using a single metric. Due to noise and outliers, an existing feature selection metric, called monotonicity, used for estimating bearings RUL, requires data smoothing processing before adequate implementation. Such a smoothing process may remove significant part of meaningful information from data. To overcome this issue, a mixture distribution analysis-based feature selection metric is proposed. Moreover, based on this new metric, a feature selection approach for bearings RUL estimation is proposed. Numerical experiments benchmarking the proposed method and the existing metric monotonicity method on available real datasets highlight its effectiveness.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering