Design and implementation of a wireless communication-based sprinkler irrigation system with seed sowing functionality

Author:

Venkatesh BhupalamORCID,Suresh Y.,Chinna Babu J.ORCID,Guru Mohan N.,Madana Kumar Reddy C.,Kumar Manoj

Abstract

AbstractThis study addresses the critical health risks faced by farmers owing to the use of harmful chemical pesticides in agriculture. The primary objective is to create an effective solution to minimize these risks and reduce the use of pesticides. To achieve this, a smart irrigation system has been implemented by connecting various sensors, such as moisture sensors and thermal imagers through the Internet of Things. These sensors collect vital data on crop moisture levels and thermal images that are securely stored in a cloud-based system. The data collected were subjected to extensive analysis to ensure accurate pesticide use and to identify specific pests affecting crops. In addition, the smart irrigation system includes an Android phone for remote monitoring and pesticide spray detection, thus offering a convenient remote-based operating system for farmers. This innovative system not only proved to be cost-effective but also proved to be significantly more efficient than traditional methods, resulting in reduced labor costs. Importantly, it not only addressed the health risks associated with pesticide use but also led to a significant reduction in overall pesticide use in agriculture. This research provides a comprehensive and effective approach to address the health risks farmers face from harmful pesticides, thereby promoting sustainable and safe farming practices for the future.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Reference25 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3