Hydrodynamic and ecological 3D modeling in tropical lakes

Author:

Amorim Lais F.ORCID,Martins José Rodolfo ScaratiORCID,Nogueira Fabio F.ORCID,Silva Fabio P.ORCID,Duarte Bárbara P. S.,Magalhães Ariel A. B.ORCID,Vinçon-Leite BrigitteORCID

Abstract

AbstractConservation and improvement of water quality in water bodies is an important matter to maintain all of its uses as well as other human necessities like microclimate regulation and leisure. Lakes and reservoirs have a complex circulation behavior with vertical temperature profiles changes along the time, resulting in differences in water density and a vertical stratification condition. This characteristic can directly affect the water quality conditions perturbing its main indicators. This study aims to evaluate the quasi-3D models' capacity to represent the hydrodynamic behavior of a tropical lake and its effects on the main variables that characterize its water quality. To achieve this objective, high-frequency monitoring data were collected, the lake was represented in a quasi-3D model, and the accuracy of the result was evaluated by applying statistical indices. The evaluation showed good agreement between field measures and simulated results when compared with other applications. The connections between hydrodynamic behavior and water quality were seen with the simulations results analysis, which showed that mixing events and long stratification periods perturb the water quality, the first with re-suspended bed material and the second blocking the surface and bottom exchanges. The application of a 3D model gives the capacity to reproduce the reservoir spatial variability and its vertical profiles, which is necessary to study the constituents' distributions across the water column. Therefore, the hydrodynamic and water quality behavior of lakes was accurately represented by the model, as well as the importance of improving high-frequency monitoring techniques.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3