Design and exploration of neural network microsystem based on SiP

Author:

Lv HaoORCID,Zhang Shengbing,Deng Bao,Wang Jia,Jing Desheng,Chu Yaoqin,Zhang Kun

Abstract

AbstractIn recent years, microelectronics technology has entered the era of nanoelectronics/integrated microsystems. System in package (SiP) and system on chip (SoC) are two important technical approaches for the realization of microsystems. Deep learning technology based on neural networks is used in graphics and images. Computer vision and target recognition are widely used. The deep learning technology of convolutional neural network is an important research field in the miniaturization and miniaturization of embedded platforms. How to combine the lightweight neural network with the microsystem to achieve the optimal balance of performance, size, and power consumption is a difficult point. This article introduces a micro-system implementation scheme that combines SiP technology and FPGA-based convolutional neural network. It uses Zynq SoC and FLASH and DDR3 memory as the main components, and uses SiP high-density system packaging technology to integrate. PL end (FPGA) design Convolutional Neural Network, convolutional neural network accelerator, adopt the method of convolution multi-dimensional division and cyclic block to design the accelerator structure, design multiple multiplication and addition parallel computing units to provide the computing power of the system. Improving and accelerating perform on the YOLOv2_Tiny model. The test uses the COCO data set as the training and test samples. The microsystem can accurately identify the target. The volume is only 30 × 30 × 1.2 mm. The performance reaches 22.09GOPs and the power consumption is only 0.81 W under the working frequency of 150 MHz. Multi-objective balance (performance, size and power consumption) of lightweight neural network Microsystems has realized.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3