α-Si3N4 and Si2N2O whiskers from rice husk and industrial rice husk ash

Author:

Parrillo A.ORCID,Sánchez G.,Alles A. Bologna

Abstract

AbstractRice industrialization worldwide generates significant amounts of rice husk as a by-product. When rice husk is burned to obtain energy, a relatively common practice, a substantial portion of the husk turns into ash, and both constitute environmental liabilities. Using rice husk and ash as starting materials to produce high-value products could help in mitigating the environmental impact while providing economic revenue. Rice husk and rice husk ash as produced in a local cogeneration plant without any pretreatments were evaluated as feasible sources for silicon nitride (Si3N4) and silicon oxynitride (Si2N2O) whiskers by carbothermal reduction and nitridation. Rice husk and the ash were held at temperatures between 1200 and 1400 °C for 3 h under flowing nitrogen. Increasing soaking temperature values led to higher whisker development for both starting materials, with the best results observed at 1400 °C. Whereas α-silicon nitride whiskers were obtained when rice husk was employed, the graphite surface-to-ash ratio dictated whisker composition for the ash. Treatment of the ash at the soaking temperature value of 1400 °C led to silicon oxynitride for lower graphite surface-to-ash ratios, but when this ratio was increased, α-silicon nitride predominated. α-silicon nitride whiskers had cross sections ranging from about 100 nm to 1 µm in width, whereas the silicon oxynitride whiskers had cross sections ranging from approx. 100 to 500 nm in diameter. Both types of whiskers were observed to be in the millimeter length range.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3