Abstract
AbstractIn an open source software development environment, it is hard to decide the number of group members required for resolving software issues. Developers generally reply to issues based totally on their domain knowledge and interest, and there are no predetermined groups. The developers openly collaborate on resolving the issues based on many factors, such as their interest, domain expertise, and availability. This study compares eight different algorithms employing machine learning and deep learning, namely—Convolutional Neural Network, Multilayer Perceptron, Classification and Regression Trees, Generalized Linear Model, Bayesian Additive Regression Trees, Gaussian Process, Random Forest and Conditional Inference Tree for predicting group size in five open source software projects developed and managed using an open source development framework GitHub. The social information foraging model has also been extended to predict group size in software issues, and its results compared to those obtained using machine learning and deep learning algorithms. The prediction results suggest that deep learning and machine learning models predict better than the extended social information foraging model, while the best-ranked model is a deep multilayer perceptron((R.M.S.E. sequelize—1.21, opencv—1.17, bitcoin—1.05, aseprite—1.01, electron—1.16). Also it was observed that issue labels helped improve the prediction performance of the machine learning and deep learning models. The prediction results of these models have been used to build an Issue Group Recommendation System as an Internet of Things application that recommends and alerts additional developers to help resolve an open issue.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献