IoT-based group size prediction and recommendation system using machine learning and deep learning techniques

Author:

Chopra DeeptiORCID,Kaur Arvinder

Abstract

AbstractIn an open source software development environment, it is hard to decide the number of group members required for resolving software issues. Developers generally reply to issues based totally on their domain knowledge and interest, and there are no predetermined groups. The developers openly collaborate on resolving the issues based on many factors, such as their interest, domain expertise, and availability. This study compares eight different algorithms employing machine learning and deep learning, namely—Convolutional Neural Network, Multilayer Perceptron, Classification and Regression Trees, Generalized Linear Model, Bayesian Additive Regression Trees, Gaussian Process, Random Forest and Conditional Inference Tree for predicting group size in five open source software projects developed and managed using an open source development framework GitHub. The social information foraging model has also been extended to predict group size in software issues, and its results compared to those obtained using machine learning and deep learning algorithms. The prediction results suggest that deep learning and machine learning models predict better than the extended social information foraging model, while the best-ranked model is a deep multilayer perceptron((R.M.S.E. sequelize—1.21, opencv—1.17, bitcoin—1.05, aseprite—1.01, electron—1.16). Also it was observed that issue labels helped improve the prediction performance of the machine learning and deep learning models. The prediction results of these models have been used to build an Issue Group Recommendation System as an Internet of Things application that recommends and alerts additional developers to help resolve an open issue.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3