Maximal activities of hexokinase, 6-phosphofructokinase, oxoglutarate dehydrogenase, and carnitine palmitoyltransferase in rat and avian muscles

Author:

Blomstrand Eva1,Challiss R. A. John1,Cooney Gregory J.1,Newsholme Eric A.1

Affiliation:

1. Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.

Abstract

The maximum activities of 6-phosphofructokinase and oxoglutarate dehydrogenase in muscle provide quantitative indices of the maximum capacities of anaerobic glycolysis and the Krebs cycle (i.e. the aerobic capacity) respectively. These activities were measured in red, white, and cardiac muscle of birds and the rat. The activities in the white pectoral muscle of the domestic fowl suggest that the Krebs cycle plus electron transfer could provide only about 1% of the rate of ATP production provided by anaerobic glycolysis whereas in pigeon pectoral muscle the predicted maximal rates from the two processes are similar. In contrast to domestic-fowl pectoral muscle, the white rat muscle, epitrochlearis, contains a significant activity of oxoglutarate dehydrogenase, which indicates that the Krebs cycle could provide about 12% of the maximum rate of ATP formation. This may be explained by a higher proportion of type-I and -IIA fibres in the rat muscle compared to the avian muscle. In the aerobic muscles of the rat the maximum activities of carnitine palmitoyl transferase indicate that fatty-acid oxidation could provide a high rate of ATP formation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3