Marine heatwave in the Oyashio region in 2022/23 and its impact on subsurface dissolved oxygen

Author:

Kawai YoshimiORCID,Oka Eitarou,Sato Kanako,Hosoda Shigeki,Kido Shoichiro

Abstract

AbstractThe Oyashio region east of northern Japan has experienced frequent marine heatwaves (MHWs) since 2010, and in the summer and fall of 2022, sea surface temperature hit a record high as of that year. This study examined the impact of the 2022/23 MHW on dissolved oxygen (DO) by analyzing observations from a vessel and biogeochemical Argo floats. It was found that warm saline water from the Kuroshio Current intruded at ~ 42°N in July. DO anomalies from the climatology above a depth of 200 m were negatively correlated with the temperature anomalies at the same depth, while the opposite was true for deeper depths. In the density coordinate, DO and temperature anomalies exhibited a strong negative correlation when the potential density (σθ) was less than ~ 27.0 kg m−3. Thus, it was demonstrated that subsurface DO anomalies could be statistically predicted from temperature and salinity fields using this relationship. Notably, DO anomalies could be divided into components related to isopycnal mixing and density-surface heaving. This decomposition revealed a dynamical process, whereby the intrusion of the Kuroshio water, which is lighter than the Oyashio water, pushed down the density surfaces, causing oxygenation. Meanwhile, isopycnal mixing tended to mitigate the increase of DO concentration since DO concentration was smaller in the south than in the north on an isopycnal surface of σθ < 27.0 kg m−3. This study clarified that, during the 2022/23 MHW, deoxygenation occurred near the surface owing the warming, whereas the DO concentration increased in the subsurface layer.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Japan Society for the Promotion Science

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3