Use of AERONET-OC for validation of SGLI/GCOM-C products in Ariake Sea, Japan

Author:

Ishizaka JojiORCID,Yang Mengmeng,Fujii Naoki,Katano Toshiya,Hori Masahiro,Mine Takayuki,Saitoh Katsuya,Murakami Hiroshi

Abstract

AbstractA station of AErosol RObotic NETwork Ocean Color (AERONET-OC) has been set on the Ariake Observation Tower of Saga University on April, 2018, for verification of the Second generation Global Imager (SGLI)/Global Change Observation Mission-Climate (GCOM-C). Remote sensing reflectance (Rrs) observed by the AERONET-OC was used for verification of SGLI. SGLI Version 1 data underestimated the shortwave Rrs and Rrs (380) and Rrs(412) were mostly negative, while the estimation was improved by Version 2 with the correction of Rrs(412) to be positive. It was indicated that absorptive aerosol was influenced to SGLI atmospheric correction and caused the underestimation of Rrs. Simple linear correction method to improve shortwave Rrs also worked well for specifically Version 1 data. Water constituents, chlorophyll-a (Chl-a), total suspended matter (TSM) and colored dissolved organic matter (CDOM) of the SGLI were also verified by the ship observation data. All constituents were improved from Version 1 to 2 with the correction of Rrs, although Version 2 underestimated Chl-a and CDOM. Simple regression algorithms were also examined with in situ as well as SGLI Rrs data, and it indicated that more sophisticated algorithms may be required. Time series of water constituents derived from AERONET-OC and SGLI data were compared to river discharge and spring–neap tidal cycle. The results indicated that the behavior, such as the increase of Chl-a after river discharge and interaction of Chl-a and TSM with the spring–neap tidal cycles were observed, although estimations of water constituents were not completely separated by the algorithms.

Funder

Japan Aerospace Exploration Agency

Fisheries Agency

Publisher

Springer Science and Business Media LLC

Subject

Oceanography

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3