Decadal-scale variability of the North Pacific subtropical mode water and its influence on the pycnocline observed along 137°E

Author:

Kobashi FumiakiORCID,Nakano Toshiya,Iwasaka Naoto,Ogata Tomomichi

Abstract

AbstractDecadal-scale variability of the North Pacific subtropical mode water (STMW) and its influence on the pycnocline are examined by analyzing Japan Meteorological Agency (JMA) repeat hydrographic observations along the 137°E meridian from 1972 to 2019, with a particular focus on the summer season when the seasonal upper pycnocline develops above the STMW. The STMW appears between 20° and 32°N at 137°E, with the thickness varying on decadal timescales of approximately 9–15 years. Argo float observations suggest that the observed change in the STMW thickness originates in the wintertime mixed layer south of the Kuroshio Extension in the preceding year. The STMW has a substantial impact on the pycnocline. The presence of thick STMW shoals the upper pycnocline, occasionally concurrent with the deepening of the lower main pycnocline. The change is robust in the upper pycnocline, where the heaving of isopycnal surfaces occurs with density anomalies up near the surface. The subtropical front (STF) at subsurface depths, which is associated with a northward shoaling of the upper pycnocline and is maintained by the STMW in the climatology, also changes on decadal timescales. A thick STMW increases the northward shoaling of the upper pycnocline and intensifies the STF. On decadal timescales, the STF variations are accounted for by the STMW-induced change in the upper pycnocline slope. The change in the STF due to mode waters is consistent with previous findings from numerical models.

Funder

Japan Society for the Promotion of Science (JSPS) KAKENHI

Publisher

Springer Science and Business Media LLC

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3