Abstract
AbstractThis study proposes an algorithm to identify stable Kuroshio meanderings by extracting topological features from a sea surface height (SSH) gridded dataset in 1993–2020. Based on the mathematical theory of topological classifications for streamline patterns, the algorithm provides a unique symbolic representation and a discrete graph structure, which is referred to as the partially cyclically ordered rooted tree (COT) representation and the Reeb graph, respectively, to structurally stable Hamiltonian vector fields. We have confirmed that the temporal variations in the Kuroshio southernmost position south of the Tokai district captured by the algorithm are well consistent with the existing results by the Japan Meteorological Agency (JMA). The algorithm based on the topology detects five meandering periods: The three of them correspond to large meandering events detected by the JMA, while the two of them are offshore non-large meandering events. The topological data analysis reveals that a large cyclonic eddy inside of the meandering is split into two small eddies near the termination of the most meandering events.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献