Abstract
AbstractThe sea-surface roughness or drag coefficient is ascribed to the effect of various components of ocean waves. Many studies have been focused on the investigation of the dependence of drag coefficient on sea states that are usually denoted by wave age. However, no universally accepted relationship has been obtained up to now and the results are significantly scattered or even contradicted. We reviewed the parameterizations of sea-surface roughness as a function of wave age, and found that the phase speed at spectral peak cp is an important parameter to characterize the drag coefficient. For the same wave age, drag coefficient increases with increasing cp. Contrary to the traditional concept, the older waves with greater cp possesses higher sea-surface roughness for the same wind speed because more wave components participate the air–sea interaction and intensify the wind stress. With the buoy meansurements and the theory of equilibrium range of wind waves, we estimated fricition velocity and proposed that the frequency bandwidth and spectral width of the wave spectrum are more suitable parameters than the traditional wind speed and wave age to be used to parameterize drag coefficient. This study provides a new way to estimate wind stress through the reliable spectra of ocean waves.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献