Mode II fracture characterization of toughened epoxy resin composites

Author:

Barcikowski MichałORCID,Rybkowska Katarzyna

Abstract

AbstractEpoxy resin used commonly as a matrix for polymer composite materials has good handling properties, but is too brittle. That is why various modifiers are used to increase the flexibility of products based on epoxy resin. This leads to two issues: how to efficiently increase the toughness of the resin without impacting significantly other properties, as well as how to measure the toughness in composite materials. The work aimed to show how the addition of a reactive rubber modifier will affect the fracture toughness of the obtained laminates during the longitudinal shear test (Mode II fracture). In total, three epoxy-glass laminates with different matrices were made and subjected to the End-Notched Flexure test according to ASTM D7905/D7905M standard: (1) the basic matrix of Epidian 6 resin, (2) Epidian 6 modified with the addition of 10% of Albipox 1000 reactive liquid rubber and (3) Epidian 6 modified with the addition of 10% of Hypro 1300X16 ATBN reactive liquid rubber. Based on the obtained results, it can be seen that the modulus of elasticity for the modified laminates was decreased compared to the laminate of pure epoxy resin (by ~ 25%). However, the addition of reactive rubbers increased the fracture toughness of the modified epoxy-glass laminates in the Mode II longitudinal shear test (GIIc) by ~ 40–60%. Thus the benefits of modification outweigh the drawbacks if fracture toughness is an important designing consideration in a given application. The applicability of ENF method is successfully tested, but potential drawbacks are indicated—careful control of specimen thickness is necessary.

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,Modeling and Simulation,Computational Mechanics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3