Modeling brittle crack propagation for varying critical load levels: a dynamic phase-field approach

Author:

Rudshaug Jonas,Børvik Tore,Hopperstad Odd Sture

Abstract

AbstractBrittle materials are known for their violent and unpredictable cracking behavior. A behavior which is dictated by a combination of microscopical material defects and the competition between the potential energy of the system and the surface energy of the material. In this study, we present the implementation of a dynamic fracture phase-field model with a new crack driving force into a commercial finite element (FE) solver and examine its behavior using three different tension-compression splits. After validating the implementation, we use the model to investigate its predictive capacity on quasi-statically loaded L-shaped soda-lime glass specimens with varying critical load levels. The dynamic fracture phase-field model predicted similar crack propagation to what was found in the literature for quasi-static and dynamic validation cases. By varying the critical load level for the L-shaped soda-lime glass specimens using the new crack driving force, the model predicted a positive correlation between the initial crack propagation speed and the critical load level, similar to what was seen in the experiments. However, the predicted crack propagation speed decreased quicker than the experimental crack propagation speed. The tension-compression splits had an impact on the predicted crack propagation paths. Overall, the proposed crack driving force used in the dynamic fracture phase-field model seems to capture the relation between critical load and initial crack propagation speed and thus enables crack predictions for specimens of varying strength.

Funder

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,Modeling and Simulation,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3