Phase-field modelling: effect of an interface crack on precipitation kinetics in a multi-phase microstructure

Author:

Nigro C. F.ORCID,Bjerkén C.,Mellbin Y.

Abstract

AbstractPremature failures in metals can arise from the local reduction of the fracture toughness when brittle phases precipitate. Precipitation can be enhanced at the grain and phase boundaries and be promoted by stress concentration causing a shift of the terminal solid solubility. This paper provides the description of a model to predict stress-induced precipitation along phase interfaces in one-phase and two-phase metals. A phase-field approach is employed to describe the microstructural evolution. The combination between the system expansion caused by phase transformation, the stress field and the energy of the phase boundary is included in the model as the driving force for precipitate growth. In this study, the stress induced by an opening interface crack is modelled through the use of linear elastic fracture mechanics and the phase boundary energy by a single parameter in the Landau potential. The results of the simulations for a hydrogenated ($$\alpha +\beta $$ α + β ) titanium alloy display the formation of a precipitate, which overall decelerates in time. Outside the phase boundary, the precipitate mainly grows by following the isostress contours. In the phase boundary, the hydride grows faster and is elongated. Between the phase boundary and its surrounding, the matrix/hydride interface is smoothened. The present approach allows capturing crack-induced precipitation at phase interfaces with numerical efficiency by solving one equation only. The present model can be applied to other multi-phase metals and precipitates through the use of their physical properties and can also contribute to the efficiency of multi-scale crack propagation schemes.

Funder

Malmö University

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,Modelling and Simulation,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3