1. Adams, R.P., Dahl, G.E., Murray, I.: Incorporating side information into probabilistic matrix factorization using Gaussian processes. In: P. Grünwald, P. Spirtes (eds.) Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, pp. 1–9 (2010)
2. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)
3. Agarwal, D., Chen, B.C., Long, B.: Localized factor models for multi-context recommendation. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD ’11, pp. 609–617. ACM, New York, NY, USA (2011). DOI
http://doi.acm.org/10.1145/2020408.2020504
. URL
http://doi.acm.org/10.1145/2020408.2020504
4. Balabanović, M., Shoham, Y.: Fab: Content-based, collaborative recommendation. Communications of the ACM 40(3), 66–72 (1997)
5. Baltrunas, L., Ricci, F.: Item weighting techniques for collaborative filtering. In: Knowledge Discovery Enhanced with Semantic and Social Information, pp. 109–126. Springer (2009)