1. Ackermann MR, Martens M, Raupach C, Swierkot K, Lammersen C, Sohler C (2012) StreamKM++: a clustering algorithm for data streams. ACM J Exp Algorithm 17(1):173–187
2. Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Proceedings of the 29th International Conference on Very Large Data Bases. VLDB Endowment, pp 81–92
3. Cao F, Ester M, Qian W, Zhou A (2006) Density-based clustering over an evolving data stream with noise. In: Ghosh J, Lambert D, Skillicorn DB, Srivastava J (eds) Proceedings of the Sixth SIAM International Conference on Data Mining, 20–22 Apr, 2006. Bethesda, MD, USA. SIAM, pp 328–339
4. Domingos P, Hulten G (2001) A general method for scaling up machine learning algorithms and its application to clustering. In: Machine Learning, Proceedings of the 18th International Conference, Williamstown, USA. Morgan Kaufmann, pp 106–113
5. Farnstrom F, Lewis J, Elkan C (2000) Scalability for clustering algorithms revisited. SIGKDD Explorations 2(1):51–57