Propagation of spontaneous electrical activity in the ex vivo human uterus

Author:

Kuijsters Nienke P.M.ORCID,Sammali FedericaORCID,Ye Xin,Blank CelineORCID,Xu LinORCID,Mischi MassimoORCID,Schoot Benedictus C.ORCID,Rabotti ChiaraORCID

Abstract

AbstractContractions of the non-pregnant uterus play a key role in fertility. Yet, the electrophysiology underlying these contractions is poorly understood. In this paper, we investigate the presence of uterine electrical activity and characterize its propagation in unstimulated ex vivo human uteri. Multichannel electrohysterographic measurements were performed in five freshly resected human uteri starting immediately after hysterectomy. Using an electrode grid externally and an electrode array internally, measurements were performed up to 24 h after hysterectomy and compared with control. Up to 2 h after hysterectomy, we measured biopotentials in all included uteri. The median root mean squared (RMS) values of the external measurements ranged between 3.95 μV (interquartile range (IQR) 2.41–14.18 μV) and 39.4 μV (interquartile range (IQR) 10.84–105.64 μV) and were all significantly higher than control (median RMS of 1.69 μV, IQR 1.13–3.11 μV), consisting of chicken breast meat. The RMS values decreased significantly over time. After 24 h, the median RMS (1.27 μV, IQR 0.86–3.04 μV) was comparable with the control (1.69 μV, IQR 1.13–3.11 μV, p = 0.125). The internal measurements showed a comparable pattern over time, but overall lower amplitude. The measured biopotentials propagated over the uterine surface, following both a plane-wave as well as an erratic pattern. No clear pacemaker location nor a preferred propagation direction could be identified. These results show that ex vivo uteri can spontaneously generate propagating biopotentials and provide novel insight contributing to improving our understanding of the electrophysiology of the human non-pregnant uterus.

Funder

Stichting voor de Technische Wetenschappen

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Clinical Biochemistry,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feasibility of 3D Ultrasound Strain Analysis in the Non-Pregnant Uterus;2024 IEEE International Symposium on Medical Measurements and Applications (MeMeA);2024-06-26

2. Noninvasive imaging of 4D electrical activation patterns of uterine peristalsis during normal menstrual cycles;npj Women's Health;2024-01-08

3. Intrauterine adhesions: from pathogenesis to effective coping technologies;Meditsinskiy sovet = Medical Council;2023-04-19

4. In vivo multi-channel measurement of electrical activity of the non-pregnant rat uterus;2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2022-07-11

5. Modern concepts about the mechanisms of initiation and regulation of labor activity;Journal of obstetrics and women's diseases;2022-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3