Characterization of intestine-specific TRPM6 knockout C57BL/6 J mice: effects of short-term omeprazole treatment

Author:

Adella AnastasiaORCID,Gommers Lisanne M. M.,Bos CaroORCID,Leermakers Pieter A.ORCID,de Baaij Jeroen H. F.ORCID,Hoenderop Joost G. J.ORCID

Abstract

AbstractThe transient receptor potential melastatin type 6 (TRPM6) is a divalent cation channel pivotal for gatekeeping Mg2+ balance. Disturbance in Mg2+ balance has been associated with the chronic use of proton pump inhibitors (PPIs) such as omeprazole. In this study, we investigated if TRPM6 plays a role in mediating the effects of short-term (4 days) omeprazole treatment on intestinal Mg2+ malabsorption using intestine-specific TRPM6 knockout (Vill1-TRPM6−/−) mice. To do this, forty-eight adult male C57BL/6 J mice (50% TRPM6fl/fl and 50% Vill1-TRPM6−/−) were characterized, and the distal colon of these mice was subjected to RNA sequencing. Moreover, these mice were exposed to 20 mg/kg bodyweight omeprazole or placebo for 4 days. Vill1-TRPM6−/− mice had a significantly lower 25Mg2+ absorption compared to control TRPM6fl/fl mice, accompanied by lower Mg2+ serum levels, and urinary Mg2+ excretion. Furthermore, renal Slc41a3, Trpm6, and Trpm7 gene expressions were higher in these animals, indicating a compensatory mechanism via the kidney. RNA sequencing of the distal colon revealed a downregulation of the Mn2+ transporter Slc30a10. However, no changes in Mn2+ serum, urine, and feces levels were observed. Moreover, 4 days omeprazole treatment did not affect Mg2+ homeostasis as no changes in serum 25Mg2+ and total Mg2+ were seen. In conclusion, we demonstrate here for the first time that Vill1-TRPM6−/− mice have a lower Mg2+ absorption in the intestines. Moreover, short-term omeprazole treatment does not alter Mg2+ absorption in both Vill1-TRPM6−/− and TRPM6fl/fl mice. This suggests that TRPM6-mediated Mg2+ absorption in the intestines is not affected by short-term PPI administration.

Funder

European Research Council

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3