The regulatory role of GABAA receptor in Actinia equina nervous system and the possible effect of global ocean acidification

Author:

Snigirov SergiiORCID,Sylantyev SergiyORCID

Abstract

AbstractGlobal warming and connected acidification of the world ocean attract a substantial amount of research efforts, in particular in a context of their impact on behaviour and metabolism of marine organisms, such as Cnidaria. Nevertheless, mechanisms underlying Cnidarians’ neural signalling and behaviour and their (possible) alterations due to the world ocean acidification remain poorly understood. Here we researched for the first time modulation of GABAA receptors (GABAARs) in Actinia equina (Cnidaria: Anthozoa) by pH fluctuations within a range predicted by the world ocean acidification scenarios for the next 80–100 years and by selective pharmacological activation. We found that in line with earlier studies on vertebrates, both changes of pH and activation of GABAARs with a selective allosteric agonist (diazepam) modulate electrical charge transfer through GABAAR and the whole-cell excitability. On top of that, diazepam modifies the animal behavioural reaction on startle response. However, despite behavioural reactions displayed by living animals are controlled by GABAARs, changes of pH do not alter them significantly. Possible mechanisms underlying the species resistance to acidification impact are discussed.

Funder

Wellcome Trust

EMBLAS

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Clinical Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3