Calcineurin-dependent regulation of gap junction conductance and connexin phosphorylation in guinea pig left atrium

Author:

Jabr R. I.,Salvage S. C.,Hatch F. S.,Fry C. H.

Abstract

Abstract Atrial fibrillation (AF) occurs from disordered atrial action potential conduction and is associated with reduced gap junction electrical conductance (Gj). The Ca2+ and calmodulin-dependent phosphatase, calcineurin, reduces Gj in ventricular myocardium via a protein phosphatase-1 (PP1)-dependent pathway culminating in phosphorylation of serine368 on connexin43 (pSer368-Cx43). However, characterisation of corresponding pathways in left atrial myocardium, which have a more complex connexin subtype profile, is undefined and was the aim of this study. Gj was measured in guinea-pig left atrium from the frequency-dependent variation of intracellular impedance; intracellular [Ca2+], ([Ca2+]i) in low-Na solution was measured by Fura-2 fluorescence. Phosphorylation of guinea-pig Ser368-Cx43 residues was measured by Western blot; Cx40 was immunoprecipitated and probed for serine/threonine residue phosphorylation. Low-Na solution reversibly reduced Gj, in turn attenuated or prevented by calcineurin inhibitors cyclosporin-A or CAIP, respectively. Moreover, Ser368-Cx43 phosphorylation in low-Na solution was also prevented by CAIP. Changes were partially prevented by fostreicin (FST), a protein phosphatase-2A (PP2A) inhibitor; but not by tautomycin, a PP1 inhibitor. Serine/threonine residues on Cx40 were also phosphorylated in low-Na solution; prevented by CAIP and attenuated by FST. Reduced Gj with raised [Ca2+]i is paralleled by a changed Cx43/Cx40 phosphorylation status; changes mediated by calcineurin and PP2A-dependent pathways, but not PP1. The pharmacological profile underlying changes to guinea-pig atrial gap junction electrical conductance with raised intracellular [Ca2+]i is fundamentally different from that in ventricular myocardium. This provides a targeted drug model whereby atrial and ventricular myocardium can be selectively targeted to correct conduction defects.

Funder

HASTE

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Clinical Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3