Author:
Mukherjee Rajlaxmi,Manna Tuhin,Pal Pavel
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Reference9 articles.
1. Hoogewijs, A.:
$$\cal{I}$$
I
-congruences on seminearrings. An. Şti. Univ. “Al. I. Cuza” Iaşi Secţ. I a Mat. (N.S.) 22, 3–9 (1976)
2. Mukherjee (Pal), R., Pal, P., Sardar, S.K.: On additively completely regular seminearrings. Commun. Algebra 45(12), 5111–5122 (2017)
3. Mukherjee, R., Pal, P., Manna, T., Sardar, S.K.: On additively completely regular seminearrings-II. Commun. Algebra.
https://doi.org/10.1080/00927872.2018.1524011
(To appear)
4. Petrich, M., Reilly, N.R.: Completely Regular Semigroups. Wiley, New York (1999)
5. Sardar, S.K., Mukherjee, R.: On additively regular seminearrings. Semigroup Forum 88, 541–554 (2014)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On full subdirect products of a bi-semilattice and a (zero-symmetric) near-ring;Asian-European Journal of Mathematics;2023-05-25
2. Rees matrix seminearring;Asian-European Journal of Mathematics;2022-01-12