The semigroup of endomorphisms with restricted range of an independence algebra

Author:

Grau AmbroiseORCID

Abstract

AbstractSince its introduction by Symons, the semigroup of maps with restricted range has been studied in the context of transformations on a set, or of linear maps on a vector space. Sets and vector spaces being particular examples of independence algebras, a natural question that arises is whether by taking the semigroup $$T(\mathscr {A}, \mathscr {B}) $$ T ( A , B ) of all endomorphisms of an independence algebra $$\mathscr {A} $$ A whose image lie in a subalgebra $$\mathscr {B} $$ B , one can obtain corresponding results as in the cases of sets and vector spaces. In this paper, we put under a common framework the research from Sanwong, Sommanee, Sullivan, Mendes-Gonçalves and all their predecessors. We describe Green’s relations as well as the ideals of $$T(\mathscr {A}, \mathscr {B}) $$ T ( A , B ) following their lead. We then take a new direction, completely describing all of the extended Green’s relations on $$T(\mathscr {A}, \mathscr {B}) $$ T ( A , B ) . We make no restriction on the dimension of our algebras as the results in the finite and infinite dimensional cases generally take the same form.

Publisher

Springer Science and Business Media LLC

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3