On the infinitesimal generator of an optimal state semigroup

Author:

Acquistapace Paolo,Bucci Francesca

Abstract

AbstractIn this article we fully describe the domain of the infinitesimal generator of the optimal state semigroup which arises in the theory of the linear-quadratic problem for a specific class of boundary control systems. This represents an improvement over earlier work of the authors, joint with I. Lasiecka, where a set inclusion was established, but not an equality. The novel part of the proof of this result develops through appropriate asymptotic estimates that take advantage of the regularity analysis carried out in the study of the optimization problem, while the powers of positive operators and interpolation are still key tools. We also attest to the validity of an assumed relation between two significant parameters in the case of distinct systems of coupled hyperbolic–parabolic partial differential equations which are pertinent to the underlying framework.

Funder

Università degli Studi di Firenze

Publisher

Springer Science and Business Media LLC

Subject

Algebra and Number Theory

Reference24 articles.

1. Acquistapace, P., Bucci, F.: Uniqueness for Riccati equations with unbounded operator coefficients (2020). arXiv e-prints, arXiv:2012.05670 (submitted)

2. Acquistapace, P., Bucci, F., Lasiecka, I.: A trace regularity result for thermoelastic equations with application to optimal boundary control. J. Math. Anal. Appl. 310(1), 262–277 (2005)

3. Acquistapace, P., Bucci, F., Lasiecka, I.: Optimal boundary control and Riccati theory for abstract dynamics motivated by hybrid systems of PDEs. Adv. Differ. Equ. 10(12), 1389–1436 (2005)

4. Acquistapace, P., Bucci, F., Lasiecka, I.: A theory of the infinite horizon LQ-problem for composite systems of PDEs with boundary control. SIAM J. Math. Anal. 45(3), 1825–1870 (2013)

5. Avalos, G., Lasiecka, I.: Exponential stability of a thermoelastic system without mechanical dissipation. Rend. Istit. Mat. Univ. Trieste 28 (1996), suppl., 1–28 (1997)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3