1. Aliev, I., De Loera, J.A., Louveaux, Q.: Parametric polyhedra with at least $$k$$ lattice points: their semigroup structure and the $$k$$-Frobenius problem. In: Beveridge, A., Griggs, J.R., Hogben, L., Musiker, G., Tetali, P. (eds.) Recent Trends in Combinatorics, The IMA Volumes in Mathematics and its Applications, vol. 159, pp. 753–778. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24298-9_29
2. Aliev, I., Henk, M.: Feasibility of integer knapsacks. SIAM J. Optim. 20(6), 2978–2993 (2010). https://doi.org/10.1137/090778043
3. Beneish, L., Holmes, B., Johnson, P., La, T.: Two kinds of Frobenius problems in $${\mathbb{Z} }[\sqrt{m}]$$. Int. J. Math. Comput. Sci. 7(2), 93–100 (2012)
4. Brandenburg, M.: Elementary proof that if $$A$$ is a matrix map from $${\mathbb{Z}}^m$$ to $${\mathbb{Z}}^n$$, then the map is surjective iff the gcd of maximal minors is 1, Mathematics Stack Exchange. https://math.stackexchange.com/q/133077 (version: 2014-03-02)
5. Dutch, K., Johnson, P., Maier, C., Paschke, J.: Frobenius problems in the Gaussian integers. Geombinatorics 20(3), 93–109 (2011)