Abstract
AbstractSpinach seeds were irradiated with gamma-rays after that soaked in zinc oxide nanoparticles (ZnO–NPs) at 0.0, 50, 100 and 200 ppm for twenty-four hours at room temperature. Vegetative plant growth, photosynthetic pigments, and proline contents were investigated. Also, anatomical studies and the polymorphism by the SCoT technique were conducted. The present results revealed that the germination percentage was at the maximum values for the treatment of 100 ppm ZnO–NPs (92%), followed by 100 ppm ZnO–NPs + 60 Gy (90%). The application of ZnO–NPs resulted in an enhancement in the plant length. The maximum of chlorophylls and carotenoids content was recorded in the treatment, 100 ppm ZnO–NPs + 60 Gy. Meanwhile, the irradiation dose level (60 Gy) with all ZnO–NPs treatments increased proline content and reached its maximum increase to 1.069 mg/g FW for the treatment 60 Gy combined with 200 ppm ZnO–NPs. Also, the anatomical studies declared that there were variations between the treatments; un-irradiated and irradiated combined with ZnO–NPs plants which reveal that the leave epidermal tissue increased with 200 ppm ZnO–NPs in both the upper and lower epidermis. While irradiated plants with 60 Gy combined with 100 ppm ZnO–NPs gave more thickness of upper epidermis. As well as SCoT molecular marker technique effectively induced molecular alterations between the treatments. Where, SCoT primers targeted many new and missing amplicons that are expected to be associated with the lowly and highly expressed genes with 18.2 and 81.8%, respectively. Also, showed that the soaking in ZnO-NPs was helped for reducing molecular alteration rate, both spontaneous and induced by gamma irradiation. This nominates ZnO–NPs as potential nano-protective agents that can reduce irradiation-induced genetic damage.
Funder
Egyptian Atomic Energy Authority
Publisher
Springer Science and Business Media LLC
Subject
Metals and Alloys,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Biomaterials
Reference91 articles.
1. Abdel-Hady MS, Okasha EM, Soliman SSA, Talaat M (2008) Effect of gamma radiation and gibberellic acid on germination and alkaloid production in Atropa belladonna l. Aust J Basic Appl Sci 2(3):401–405
2. Adhikari S, Saha S, Bandyopadhyay TK, Ghosh P (2015) Efficiency of ISSR marker for characterization of Cymbopogon germplasms and their suitability in molecular bar coding. Plant Syst Evol 301(1):439–450
3. Ahmad P, Ahanger MA, Egamberdieva D, Alam P, Alyemeni MN, Ashraf M (2018) Modification of osmolytes and antioxidant enzymes by 24-epibrassinolide in chickpea seedlings under mercury (Hg) Toxicity. J Plant Growth Regul 37:309–322. https://doi.org/10.1007/s00344-017-9730-6
4. Ahmed OA, Abd El-Aziz MH (2021) Description and evaluation of some newly introduced grape cultivars under Egyptian conditions. J Agric Chem Biotech, Mansoura Univ 12(6):127–136. https://doi.org/10.21608/jacb.2021.187453
5. Ahmed N, Ahmad F, Abid M, Ullah MA (2009) Impact of zinc fertilization on gas exchange characteristics and water use efficiency of cotton crop under arid environment. Pak J Bot 4(5):2189–2197
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献