Bioremoval of heavy metals from aqueous solution using dead biomass of indigenous fungi derived from fertilizer industry effluents: isotherm models evaluation and batch optimization

Author:

El-Gendy Mervat Morsy Abass Ahmed,Abdel-Moniem Shimaa M.,Ammar Nabila S.,El-Bondkly Ahmed Mohamed Ahmed

Abstract

AbstractThe present work investigated the utilization of dead biomass of the highly multi-heavy metals tolerant indigenous fungal strain NRCA8 isolated from the mycobiome of fertilizer industry effluents that containing multiple heavy metal ions at high levels to remove Pb2+, Ni2+, Zn2+, and Mn2+ as multiple solutes from multi-metals aqueous solutions for the first time. Based on morphotype, lipotype and genotype characteristics, NRCA8 was identified as Cladosporium sp. NRCA8. The optimal conditions for the bioremoval procedure in the batch system were pH 5.5 for maximum removal (91.30%, 43.25%, and 41.50%) of Pb2+, Zn2+ and Mn2+ but pH 6.0 supported the maximum bioremoval and uptake of Ni2+ (51.60% and 2.42 mg/g) by NRCA8 dead biomass from the multi-metals aqueous solution, respectively. The 30 min run time supported the highest removal efficiency and uptake capacity of all heavy metals under study. Moreover, the equilibrium between the sorbent NRCA8 fungal biomass and sorbates Ni2+, Pb2+ and Zn2+ was attained after increasing the dead biomass dose to 5.0 g/L. Dead NRCA8 biomass was described by scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared spectrometer before and after biosorption of Pb2+, Ni2+, Zn2+ and Mn2+ under multiple metals system. The Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich isotherms were applied to characterize the adsorption equilibrium between Pb2+, Ni2+, Mn2+ and Zn2+ and the adsorbent NRCA8. By comparing the obtained coefficient of regression (R2) by Freundlich (0.997, 0.723, 0.999, and 0.917), Langmiur (0.974, 0.999, 0.974, and 0.911) and Dubinin-Radushkevich (0.9995, 0.756, 0.9996 and 0.900) isotherms values for Pb2+, Zn2+, Ni2+ and Mn2+ adsorption, respectively, it was found that the isotherms are proper in their own merits in characterization the possible of NRCA8 for removal of Pb2+, Zn2+, Ni2+ and Mn2+. DKR isotherm is the best for Pb2+ and Ni2+ (0.9995 and 0.9996) while Langmiur isotherm giving a good fit to the Zn2+ sorption (0.9990) as well as Freundlich isotherm giving a good fit to the Mn2+ sorption (0.9170). The efficiencies of Cladosporium sp. NRCA8 dead biomass for bioremoval of heavy metals from real wastewater under the optimized conditions were Pb2+, Ag+, Mn2+, Zn2+ and Al3+ ˃ Ni2+ ˃ Cr6+ ˃ Co2+ ˃ Fe3+ ˃ Cu2+ ˃ Cd2+. Dead NRCA8 biomass showed efficient ability to adsorb and reduce harmful components in the industrial effluents to a level acceptable for discharge into the environment.

Funder

National Research Centre

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3