Statistical Analysis of Anode Efficiency in Electrochemical Treatment of Wastewater and Sludge

Author:

Rumky JannatulORCID,Tang Walter Z.,Sillanpää Mika

Abstract

AbstractElectrochemical processes have proven their potential as effective technologies to treat wastewater from industrial, urban and agricultural activities, and thus, contribute towards a cleaner environment. In this study, we aimed to assess the effectiveness of the leading electrochemical technologies, such as electro-oxidation, electrochemical coagulation and electrochemical advanced oxidation processes (EAOPs), statistically for different types of anodes for the removal of various pollutants from wastewater along with their treatment efficiency. Anode is considered as a source of electron and an essential part of electrochemical processes. So, we have evaluated the relationship between different anode features such as anodic material, surface area versus removal of chemical oxygen demand (COD), dissolved organic carbon (DOC) and colour in various wastewater treatment plants (WWTPs) by IBM SPSS Statistics 26. Apart from that, various process characteristics such as inter-electrode distance, system pH, reactor volume, current density and voltage were also considered in this investigation. From the regression analysis of the electrochemical coagulation system, it was found that the removal efficiency of pollutants is enhanced by the surface area of the electrodes along with the inter-electrode distance. Regarding electro-oxidation, it was seen that COD and colour removal are both dependent on the reaction time of the system, while the DOC removal rate of different EAOPs was strongly related to the reactor volume. Furthermore, the uncertainty of the regression analysis on pollutant removal efficiency prediction was assessed. Finally, sensitivity analysis was done by Monte-Carlo method to check modest changes from input variables.

Funder

LUT University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3