Growth, Yield and Water Productivity of Tomato as Influenced by Deficit Irrigation Water Management

Author:

Mukherjee Sangeeta,Dash Prosanta KumarORCID,Das DebeshORCID,Das ShimulORCID

Abstract

AbstractThe deficit irrigation offers water savings potential that is becoming popular in arid and semi-arid regions reducing freshwater use over time. A two-year factorial experiment was conducted to evaluate growth, yield and water productivity of tomato under water deficit irrigation of the drip and furrow method. The experiment was carried out in a split-plot design with drip irrigation and furrow irrigation as main plot treatments, and soil moisture regimes (0, -10, -20, -30 kPa) as subplots. Data were collected on growth parameters, physiological traits, yield and water productivity of tomato. The results showed that physiological traits, yield, and water productivity were significantly influenced by irrigation system and soil moisture regime. The drip irrigation system with -10 kPa soil moisture regime reduced total water input by 22.6% and 19.8% and gave 28% and 22% higher fruit yields in 2020 and 2021, respectively, compared with furrow irrigation system. Plant growth was higher and flowering occurred earlier (3 days) with drip irrigation system than with furrow irrigation. When the soil water content was -10 kPa, drip irrigation performed significantly better than for other soil moisture regimes by improving physiological and phenological attributes, and thereby, advancing tomato growth and fruit yield. Thus, a drip irrigation system with soil moisture regime -10 kPa could reduce total water input through precise irrigation, maximizing tomato yield and water productivity.

Funder

Khulna University

Texas A&M University at Qatar

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3