Multi-component Adsorption Isotherms: Review and Modeling Studies

Author:

Amrutha ,Jeppu Gautham,Girish C. R.,Prabhu Balakrishna,Mayer Katharina

Abstract

Abstract Adsorption is an important phenomenon widely used for the removal of contaminants. Several drinking water contaminants such as arsenic and fluoride, vanadium and chromium, nickel, cadmium and cobalt  are found to coexist in nature as multi-component mixtures in water. Hence, the modeling of multi-component adsorption isotherms for designing water treatment systems has gained importance recently. However, review studies of multi-component adsorption and competitive adsorption modeling are limited. The current review paper summarizes twenty-six multi-component adsorption isotherm models. Also, case studies of several common multi-component adsorption systems and the mechanisms of multi-component adsorption are discussed. Furthermore, a modeling analysis of four multi-component isotherms models for three commonly found two-component adsorption systems, i.e., cadmium-nickel, nickel–cobalt, and cadmium-cobalt, is reported. The Extended Langmuir isotherm, Competitive Langmuir isotherm, Extended Langmuir–Freundlich isotherm and Extended Freundlich isotherm models were applied in the modeling study for the competitive adsorption of Cd, Ni, and Co. The goodness of fit parameters and adsorption isotherm constants were estimated for these models. The factors influencing competitive adsorption, mechanisms of adsorption, various single and multi-component isotherm models, their significance, and limitations are also discussed in this review article. Highlights • Twenty-six multi-component and ten single-component isotherm models are compiled • Factors affecting multi-component competitive adsorption isotherms are discussed in this review paper • The applications of four multi-component isotherm models for three binary contaminant systems are presented. Graphical Abstract

Funder

Manipal Academy of Higher Education, Bangalore

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3