Auditory feedback in tele-rehabilitation based on automated gait classification

Author:

de Jesus Oliveira Victor AdrielORCID,Slijepčević Djordje,Dumphart Bernhard,Ferstl Stefan,Reis Joschua,Raberger Anna-Maria,Heller Mario,Horsak Brian,Iber Michael

Abstract

AbstractIn this paper, we describe a proof-of-concept for the implementation of a wearable auditory biofeedback system based on a sensor-instrumented insole. Such a system aims to assist everyday users with static and dynamic exercises for gait rehabilitation interventions by providing auditory feedback based on plantar pressure distribution and automated classification of functional gait disorders. As ground reaction force (GRF) data are frequently used in clinical practice to quantitatively describe human motion and have been successfully used for the classification of gait patterns into clinically relevant classes, a feed-forward neural network was implemented on the firmware of the insoles to estimate the GRFs using pressure and acceleration data. The estimated GRFs approximated well the GRF measurements obtained from force plates. To distinguish between physiological gait and gait disorders, we trained and evaluated a support vector machine with labeled data from a publicly accessible dataset. The automated gait classification was then sonified for auditory feedback. The potential of the implemented auditory feedback for preventive and supportive applications in physical therapy was finally assessed with both expert and non-expert participants. A focus group revealed experts’ expectations for the proposed system, while a usability study assessed the clarity of the auditory feedback to everyday users. The evaluation shows promising results regarding the usefulness of our system in this application area.

Funder

Austrian Ministry of Digital and Economic Affairs within the FFG IKT der Zukunft

Gesellschaft für Forschungsförderung NÖ

FH St. Pölten - University of Applied Sciences

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,Computer Science Applications,Hardware and Architecture,Library and Information Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3