Abstract
AbstractEcological information on wildlife reservoirs is fundamental for research targeting prevention of zoonotic infectious disease, yet basic information is lacking for many species in global hotspots of disease emergence. We provide the first estimates of synchronicity, magnitude, and timing of seasonal birthing in Mops condylurus, a putative ebolavirus host, and a co-roosting species, Mops pumilus (formerly Chaerephon pumilus). We show that population-level synchronicity of M. condylurus birthing is wide (~ 8.5 weeks) and even wider in M. pumilus (> 11 weeks). This is predicted to promote the likelihood of filovirus persistence under conditions of bi-annual birthing (two births per year). Ecological features underlying the magnitude of the birth pulse—relative female abundance (higher than expected for M. condylurus and lower for M. pumilus, based on literature) and reproductive rate (lower than expected)—will have countering effects on birthing magnitude. Species-specific models are needed to interpret how identified birth pulse attributes may interact with other features of molossid ebolavirus ecology to influence infection dynamics. As a common feature of wildlife species, and a key driver of infection dynamics, detailed information on seasonal birthing will be fundamental for future research on these species and will be informative for bat-borne zoonoses generally.
Funder
Arkansas Biosciences Institute
Publisher
Springer Science and Business Media LLC
Reference53 articles.
1. Amman BR, Carroll SA, Reed ZD, Sealy TK, Balinandi S, Swanepoel R, Kemp A, Erickson BR, Comer JA, Campbell S, Cannon DL, Khristova ML, Atimnedi P, Paddock CD, Crockett RJK, Flietstra TD, Warfield KL, Unfer R, Katongole-Mbidde E, Downing R, Tappero JW, Zaki SR, Rollin PE, Ksiazek TG, Nichol ST, Towner JS (2012) Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathogens 8:e1002877
2. Ansell WFH (1960) Mammals of northern Rhodesia
3. Ansell WFH (1986) Some Chiroptera from south-central Africa
4. Anthony ELP (1988) Age determination in bats In: Kunz TH, editor. Ecological and behavioral methods for the study of bats. Washington DC: Smithsonian Institution Press
5. Baker L, Matthiopoulos J, Müller T, Freuling C, Hampson K (2020) Local rabies transmission and regional spatial coupling in European foxes. Plos One 15:e0220592