Simply structured controllers for vibration suppression in long rotors

Author:

Aleyaasin MajidORCID

Abstract

AbstractIn this paper suppression of the transient flexural vibrational disturbances in long rotors, with fluid film bearings, is investigated. The rotor is described by a series of distributed shafts connected by the lumped discs, and the system is mounted on lumped fluid film bearings. Upon determination of the dynamic stiffness matrix of the system, the best approximate transfer function matrix description of the rotor, is determined. Initially vibration suppression by simple diagonal Proportional + Integral (PI) controllers is studied and via direct search optimisation techniques the PI parameters which exhibit fast vibration suppression is found. The resulted high integration rate, and low proportional gain PI controller, theoretically provided fast suppression time. However, it is shown that due to the strong coupling effect in the rotor system, and high rate of integration, the closed loop relative stability is weak, and feasibility of controller is questionable. Therefore, an alternative simple first order controller without integration action, that is named “attenuation filter “is suggested that can produce stronger stability and produces significant (not full) vibration suppression. The closed loop multivariable control of the rotor system comprising two vibration sensors and two magnetic actuators using such attenuation filter, is then simulated. The response to step disturbances, has provided 95% suppression with significantly fast response. It is concluded that although the attenuation filter may not provide 100% suppression, but it more reliable since the integration of the error, that results weak stability is avoided.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Civil and Structural Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3