Abstract
AbstractA simplified model for active control of vibration of a suspended cable is proposed. The model is constructed so that it considers the dynamic characteristics of the cable at the location where a vibration absorber is attached together with the absorber itself. The control is applicable for attenuating high-frequency, low-amplitude cable vibration due to periodic excitation that may model the wind effect. The methodology to choose control parameters is based on the dynamics of the vibration absorber and the stability analysis of the controlled system. The model takes into account the time delay that is always present in digital control due to sampling. Results reveal that the application of active control reduces vibration amplitude significantly provided that samples are taken in short time intervals. Increasing time delay reduces the effects of control and above a critical value, the vibration amplitude becomes even greater than without control. The importance of time delay grows with increasing excitation frequency, which means a limitation of the application of the control methodology developed. This limitation concerns the highest excitation frequencies.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Civil and Structural Engineering,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献