Concerning points of continuous curves defined by certain im kleinen properties

Author:

Whyburn G. T.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference47 articles.

1. The pointP of a connected setM is said to be a cut point ofM providedM−P is not connected. The notion of an im kleinen cut point of a continuum is contained implicitly in the works of P. Urysohn and R. L. Moore, and is closely approximated in that of R. G. Lubben and C. Zarankiewicz. Cf. P. Urysohn, Über im kleinen zusammenhängende Kontinua, Math. Annalen98 (1927), S. 296–308; [Urysohn uses the terms “unvermeidbar” (unavoidable) and “vermeidbar” (avoidable) to designate im kleinen cut points and non-im kleinen cut points, respectively]; R. L. Moore, Concerning Triods in the Plane and the Junction Points of Plane Continua, Proc. Ntl. Acad. of Sci.14 (1928), pp. 85–88; R. G. Lubben, Concerning Connectedness near a Point Set; and C. Zarankiewicz, Sur les points de division dans les ensembles connexes, Fund. Math.9 (1927), see proof of Theorem 14.

2. Cf. K. Menger, Grundzüge einer Theorie der Kurven, Math. Annalen95 (1925), S. 272–306.

3. Cf. K. Menger,loc cit., and P. Urysohn, Comptes Rendus175 (1922), p. 481. Urysohn uses the term ‘index of a point’ instead of the therm ‘order of a point’.

4. That this definition is equivalent for the case of continuous curves to the Wilder definition [R. L. Wilder, Concerning Continuous Curves, Fund. Math.7 (1925), pp. 340–377] was shown by H. M. Gehman. See Concerning End Point of Continuous Curves and other Continua, Trans. Amer. Math. Soc.30 (1928). In my thesis I showed that this definition is (for plane continuous curvesM) equivalent to the following simple one:P is an endpoint ofM provided thatP is an interior point of no arc inM.Cf. Concerning Continua in the Plane, Trans. Amer. Math. Soc.29 (1927), pp. 369–400, Theorem 12. For the extension of this and other results frequently used later ton-space see W. L. Ayres, Concerning Continuous Curves in a Space ofn Dimensions, Amer. Journal of Math.

5. Cf. W. Sierpinski, Comptes Rendus160, p. 305. Sierpinski defines a ramification point ofM as a pointP such thatM contains 3 continuaK, L andN, such thatK·L=K·N=L·N=P. It follows from a result of Menger's (Fund. Math.10) that the definition here given and Sierpinski's definition are equivalent for Menger regular curves. Rutt [Bull. Amer. Math. Soc.33 (1927), p. 411 (abstract)] has shown them equivalent for all plane continuous curves. It appears likely that they are equivalent for continuous curves inn-space.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some rational continua;Rocky Mountain Journal of Mathematics;1983-06-01

2. σ-Connectedness in Hereditarily Locally Connected Spaces;Transactions of the American Mathematical Society;1979-09

3. -connectedness in hereditarily locally connected spaces;Transactions of the American Mathematical Society;1979

4. CHARACTERIZATIONS OF CONTINUA IN WHICH CONNECTED SUBSETS ARE ARCWISE CONNECTED;T AM MATH SOC;1976

5. Characterizations of continua in which connected subsets are arcwise connected;Transactions of the American Mathematical Society;1976

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3