Approximate functional differencing

Author:

Dhaene Geert,Weidner MartinORCID

Abstract

AbstractInference on common parameters in panel data models with individual-specific fixed effects is a classic example of Neyman and Scott’s (Econometrica 36:1–32, 1948) incidental parameter problem (IPP). One solution to this IPP is functional differencing (Bonhomme in Econometrica 80(4):1337–1385, 2012), which works when the number of time periods T is fixed (and may be small), but this solution is not applicable to all panel data models of interest. Another solution, which applies to a larger class of models, is “large-T” bias correction [pioneered by Hahn and Kuersteiner (Econometrica 70(4):1639–1657, 2002) and Hahn and Newey (Econometrica 72(4):1295–1319, 2004)], but this is only guaranteed to work well when T is sufficiently large. This paper provides a unified approach that connects these two seemingly disparate solutions to the IPP. In doing so, we provide an approximate version of functional differencing, that is, an approximate solution to the IPP that is applicable to a large class of panel data models even when T is relatively small.

Funder

HORIZON EUROPE European Research Council

Flemish Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Economics, Econometrics and Finance

Reference43 articles.

1. Aguirregabiria V, Carro JM (2021) Identification of average marginal effects in fixed effects dynamic discrete choice models. arXiv preprint arXiv:2107.06141

2. Alvarez J, Arellano M (2003) The time series and cross-section asymptotics of dynamic panel data estimators. Econometrica 71(4):1121–1159

3. Andersen EB (1970) Asymptotic properties of conditional maximum-likelihood estimators. J R Stat Soc Ser B (Methodol) 32(2):283–301

4. Arellano M (2003) Discrete choices with panel data. Investig Econ 27(3):423–458

5. Arellano M, Bond S (1991) Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev Econ Stud 58(2):277–297

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3