Author:
Krejić N.,Krulikovski E. H. M.,Raydan M.
Abstract
AbstractWe consider convex constrained optimization problems that also include a cardinality constraint. In general, optimization problems with cardinality constraints are difficult mathematical programs which are usually solved by global techniques from discrete optimization. We assume that the region defined by the convex constraints can be written as the intersection of a finite collection of convex sets, such that it is easy and inexpensive to project onto each one of them (e.g., boxes, hyper-planes, or half-spaces). Taking advantage of a recently developed continuous reformulation that relaxes the cardinality constraint, we propose a specialized penalty gradient projection scheme combined with alternating projection ideas to compute a solution candidate for these problems, i.e., a local (possibly non-global) solution. To illustrate the proposed algorithm, we focus on the standard mean-variance portfolio optimization problem for which we can only invest in a preestablished limited number of assets. For these portfolio problems with cardinality constraints, we present a numerical study on a variety of data sets involving real-world capital market indices from major stock markets. In many cases, we observe that the proposed scheme converges to the global solution. On those data sets, we illustrate the practical performance of the proposed scheme to produce the effective frontiers for different values of the limited number of allowed assets.
Funder
Serbian Ministry of Education, Science, and Technological Development and Serbian Academy of Science and Arts,
Fundação para a Ciência e a Tecnologia
Fundação para a Ciência e a Tecnologia,Portugal
Universidade Nova de Lisboa
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Control and Optimization,Computer Science Applications,Economics, Econometrics and Finance (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献