Anticipative Dynamic Slotting for Attended Home Deliveries

Author:

Lang Magdalena A. K.,Cleophas Catherine,Ehmke Jan FabianORCID

Abstract

AbstractAttended home delivery requires offering narrow delivery time slots for online booking. Given a fixed fleet of delivery vehicles and uncertainty about the value of potential future customers, retailers have to decide about the offered delivery time slots for each individual order. To this end, dynamic slotting techniques compare the reward from accepting an order to the opportunity cost of not reserving the required delivery capacity for later orders. However, exactly computing this opportunity cost means solving a complex vehicle routing and scheduling problem. In this paper, we propose and evaluate several dynamic slotting approaches that rely on an anticipatory, simulation-based preparation phase ahead of the order horizon to approximate opportunity cost. Our approaches differ in their reliance on outcomes from the preparation phase (anticipation) versus decision making on request arrival (flexibility). For the preparation phase, we create anticipatory schedules by solving the Team Orienteering Problem with Multiple Time Windows. From stochastic demand streams and problem instance characteristics, we apply learning models to flexibly estimate the effort of accepting and delivering an order request. In an extensive computational study, we explore the behavior of the proposed solution approaches. Simulating scenarios of different sizes shows that all approaches require only negligible run times within the order horizon. Finally, an empirical scenario demonstrates the concept of estimating demand model parameters from sales observations and highlights the applicability of the proposed approaches in practice.

Funder

Deutsche Forschungsgemeinschaft

University of Vienna

Publisher

Springer Science and Business Media LLC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3