A real-time network-based approach for analysing best–worst data types

Author:

Münnich Ákos,Vargáné Karsai Emese,Nagy JenőORCID

Abstract

AbstractBest–worst scaling is a widespread approach in market research used for collecting data on the needs and preferences of people. However, the current preparation of its design and the analysis of the data depends on complex statistical methods. One of the most commonly used models for estimating individual preference probabilities is the hierarchical Bayes model, which can only be applied after the data collection phase. This type of calculation needs more infrastructural background and a large sample to provide accurate estimations. Here, we introduce a new application that enables fast calculations and individual-level real-time estimations, which also has a great potential to ask additional questions depending on the respondent’s answers during live interviews. Our network-based approach (integrating the PageRank algorithm) works well for online surveys, and it supports our dynamic and adaptive, real-time evaluation (DART) of best–worst data types, and results in more relevant decision making in marketing.

Funder

University of Debrecen

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3