Sulfadiazine analogs: anti-Toxoplasma in vitro study of sulfonamide triazoles

Author:

Arafa Fadwa M,Osman Doaa Hassan,Tolba Mona Mohamed,Rezki Nadjet,Aouad Mohamed R,Hagar Mohamed,Osman Mervat,Said Heba

Abstract

AbstractToxoplasmosis is an infection that prevails all over the world and is caused by the obligate intracellular protozoan parasite Toxoplasma gondii (T. gondii). Promising novel compounds for the treatment of T. gondii are introduced in the current investigation. In order to test their in vitro potency against T. gondii tachyzoites, six 1,2,3-triazoles-based sulfonamide scaffolds with terminal NH2 or OH group were prepared and investigated as sulfadiazine equivalents. When compared to sulfadiazine, which served as a positive control, hybrid molecules showed much more anti-Toxoplasma activity. The results showed that the IC50 of the examined compounds 3(af) were recoded as 0.07492 μM, 0.07455 μM, 0.0392 μM, 0.03124 μM, 0.0533 μM, and 0.01835 μM, respectively, while the sulfadiazine exhibited 0.1852 μM. The studied 1,2,3-triazole-sulfadrug molecular conjugates 3(af) revealed selectivity index of 10.4, 8.9, 25.4, 21, 8.3, and 29; respectively. The current study focused on the newly synthesized amino derivatives 3(df), as they contain the more potent amino groups which are recognized to be essential elements and promote better biological activity. Extracellular tachyzoites underwent striking morphological alterations after 2 h of treatment as seen by scanning electron microscopy (SEM). Additionally, the intracellular tachyzoite exposed to the newly synthesized amino derivatives 3(df) for a 24-h period of treatment revealed damaged and altered morphology by transmission electron microscopic (TEM) indicating cytopathic effects. Moreover, compound 3f underwent the most pronounced changes, indicating that it had the strongest activity against T. gondii.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Insect Science,General Veterinary,General Medicine,Parasitology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3