Abstract
AbstractStrategies to control goat coccidiosis traditionally rely on the use of management practices combined with anticoccidial treatments, and limited effort has been made, so far, to address immunological control of caprine Eimeria infections. Previously, we showed that monospecific immunization with X-Rad-attenuated Eimeria ninakohlyakimovae oocysts induced considerable immunoprotection upon challenge. In the present study, we conducted a similar vaccination trial but using a mixture of caprine Eimeria species typically present in natural infected goats. For immunization, sporulated oocysts were attenuated by X irradiation (20 kilorad). All infections were performed orally applying 105 sporulated oocysts of mixed Eimeria spp. per animal. In total, 18 goat kids were grouped as follows: (G1) immunized + challenge infected; (G2) primary + challenge infected; (G3) challenge infection control; and (G4) non-immunized/non-infected control. Overall, goat kids infected with attenuated oocysts (= immunized) shed less oocysts in the faeces and showed a lower degree of clinical coccidiosis than animals infected with non-attenuated oocysts. Animals of both challenge groups (G1 and G2) showed partial immunoprotection upon reinfection when compared to challenge infection control (G3). However, the degree of immunoprotection was less pronounced than recently reported for monospecific vaccination against Eimeria ninakohlyakimovae, most probably due to the complexity of the pathogenesis and related immune responses against mixed Eimeria spp. infections. Nevertheless, the data of the present study demonstrate that immunization with attenuated Eimeria spp. oocysts may be worth pursuing as a strategy to control goat coccidiosis.
Funder
Agencia Canaria de Investigación, Innovación y Sociedad de la Información
Universidad de las Palmas de Gran Canaria
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Insect Science,General Veterinary,General Medicine,Parasitology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献