Morphometric analysis of aerobic Eimeria bovis sporogony using live cell 3D holotomographic microscopy imaging

Author:

Lopez-Osorio Sara,Velasquez Zahady D.,Conejeros Iván,Taubert Anja,Hermosilla Carlos

Abstract

AbstractM onoxenous Eimeria species are widespread enteropathogenic apicomplexan protozoa with a high economic impact on livestock. In cattle, tenacious oocysts shed by E. bovis-infected animals are ubiquitously found and making infection of calves almost inevitable. To become infectious oocysts, exogenous oxygen-dependent E. bovis sporogony must occur leading to the formation of sporulated oocysts containing four sporocysts each harboring two sporozoites. Investigations on sporogony by live cell imaging techniques of ruminant Eimeria species are still absent in literature as commonly used fluorescent dyes do not penetrate resistant oocyst bi-layered wall. Sporogonial oocysts were daily analyzed by a 3D Cell Explorer Nanolive microscope to explore ongoing aerobic-dependent sporogony as close as possible to an in vivo situation. Subsequently, 3D holotomographic images of sporulating E. bovis oocysts were digitally stained based on refractive indices (RI) of oocyst bi-layered wall and sub-compartments of circumplasm using STEVE software (Nanolive), and the cellular morphometric parameters were obtained. Overall, three different E. bovis sporogony phases, each of them divided into two sub-phases, were documented: (i) sporoblast/sporont transformation into sporogonial stages, (ii) cytokinesis followed by nuclear division, and finally (iii) formation of four sporocysts with two fully developed sporozoites. Approximately 60% of sporulating E. bovis oocysts accomplished aerobic sporogony in a synchronized manner. E. bovis sporogony was delayed (i.e., 6 days) when compared to an in vivo situation where 2–3 days are required but under optimal environmental conditions. Live cell 3D holotomography analysis might facilitate the evaluation of either novel disinfectants- or anti-coccidial drug-derived effects on ruminant/avian Eimeria sporogony in vitro as discrimination of sporogony degrees based on compactness, and dry mass was here successfully achieved. Main changes were observed in the oocyst area, perimeter, compactness, extent, and granularity suggesting those parameters as an efficient tool for a fast evaluation of the sporulation degree.

Funder

Deutscher Akademischer Austauschdienst

Justus-Liebig-Universität Gießen

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Insect Science,General Veterinary,General Medicine,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3