Semi-Analytical Estimates for the Orbital Stability of Earth’s Satellites

Author:

De Blasi Irene,Celletti Alessandra,Efthymiopoulos ChristosORCID

Abstract

AbstractNormal form stability estimates are a basic tool of Celestial Mechanics for characterizing the long-term stability of the orbits of natural and artificial bodies. Using high-order normal form constructions, we provide three different estimates for the orbital stability of point-mass satellites orbiting around the Earth. (i) We demonstrate the long-term stability of the semimajor axis within the framework of the $$J_2$$ J 2 problem, by a normal form construction eliminating the fast angle in the corresponding Hamiltonian and obtaining $${\mathcal {H}}_{J_2}$$ H J 2 . (ii) We demonstrate the stability of the eccentricity and inclination in a secular Hamiltonian model including lunisolar perturbations (the ‘geolunisolar’ Hamiltonian $${\mathcal {H}}_\mathrm{gls}$$ H gls ), after a suitable reduction of the Hamiltonian to the Laplace plane. (iii) We numerically examine the convexity and steepness properties of the integrable part of the secular Hamiltonian in both the $${\mathcal {H}}_{J_2}$$ H J 2 and $${\mathcal {H}}_\mathrm{gls}$$ H gls models, which reflect necessary conditions for the holding of Nekhoroshev’s theorem on the exponential stability of the orbits. We find that the $${\mathcal {H}}_{J_2}$$ H J 2 model is non-convex, but satisfies a ‘three-jet’ condition, while the $${\mathcal {H}}_\mathrm{gls}$$ H gls model restores quasi-convexity by adding lunisolar terms in the Hamiltonian’s integrable part.

Funder

MIUR

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Engineering,Modeling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytical methods in celestial mechanics: satellites’ stability and galactic billiards;Astrophysics and Space Science;2024-05

2. From infinite to finite time stability in Celestial Mechanics and Astrodynamics;Astrophysics and Space Science;2023-12

3. Resonant Dynamics of Space Debris;Springer Proceedings in Mathematics & Statistics;2022

4. Arnold Diffusion and Nekhoroshev Theory;Springer Proceedings in Mathematics & Statistics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3