Abstract
AbstractThis work proposes and investigates a new model of the rotating rigid body based on the non-twisting frame. Such a frame consists of three mutually orthogonal unit vectors whose rotation rate around one of the three axis remains zero at all times and, thus, is represented by a nonholonomic restriction. Then, the corresponding Lagrange–D’Alembert equations are formulated by employing two descriptions, the first one relying on rotations and a splitting approach, and the second one relying on constrained directors. For vanishing external moments, we prove that the new model possesses conservation laws, i.e., the kinetic energy and two nonholonomic momenta that substantially differ from the holonomic momenta preserved by the standard rigid body model. Additionally, we propose a new specialization of a class of energy–momentum integration schemes that exactly preserves the kinetic energy and the nonholonomic momenta replicating the continuous counterpart. Finally, we present numerical results that show the excellent conservation properties as well as the accuracy for the time-discretized governing equations.
Funder
Gottfried Wilhelm Leibniz Universität Hannover
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Engineering,Modelling and Simulation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献