Higher-Order Network Interactions Through Phase Reduction for Oscillators with Phase-Dependent Amplitude

Author:

Bick ChristianORCID,Böhle TobiasORCID,Kuehn Christian

Abstract

AbstractCoupled oscillator networks provide mathematical models for interacting periodic processes. If the coupling is weak, phase reduction—the reduction of the dynamics onto an invariant torus—captures the emergence of collective dynamical phenomena, such as synchronization. While a first-order approximation of the dynamics on the torus may be appropriate in some situations, higher-order phase reductions become necessary, for example, when the coupling strength increases. However, these are generally hard to compute and thus they have only been derived in special cases: This includes globally coupled Stuart–Landau oscillators, where the limit cycle of the uncoupled nonlinear oscillator is circular as the amplitude is independent of the phase. We go beyond this restriction and derive second-order phase reductions for coupled oscillators for arbitrary networks of coupled nonlinear oscillators with phase-dependent amplitude, a scenario more reminiscent of real-world oscillations. We analyze how the deformation of the limit cycle affects the stability of important dynamical states, such as full synchrony and splay states. By identifying higher-order phase interaction terms with hyperedges of a hypergraph, we obtain natural classes of coupled phase oscillator dynamics on hypergraphs that adequately capture the dynamics of coupled limit cycle oscillators.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3