Microscopical Justification of Solid-State Wetting and Dewetting

Author:

Piovano PaoloORCID,Velčić Igor

Abstract

AbstractThe continuum model related to the Winterbottom problem, i.e., the problem of determining the equilibrium shape of crystalline drops resting on a substrate, is derived in dimension two by means of a rigorous discrete-to-continuum passage by $$\Gamma $$ Γ -convergence of atomistic models taking into consideration the atomic interactions of the drop particles both among themselves and with the fixed substrate atoms. As a byproduct of the analysis, effective expressions for the drop surface anisotropy and the drop/substrate adhesion parameter appearing in the continuum model are characterized in terms of the atomistic potentials, which are chosen of Heitmann–Radin sticky-disk type. Furthermore, a threshold condition only depending on such potentials is determined distinguishing the wetting regime, where discrete minimizers are explicitly characterized as configurations contained in an infinitesimally thick layer, i.e., the wetting layer, on the substrate, from the dewetting regime. In the latter regime, also in view of a proven conservation of mass in the limit as the number of atoms tends to infinity, proper scalings of the minimizers of the atomistic models converge (up to extracting a subsequence and performing translations on the substrate surface) to a bounded minimizer of the Winterbottom continuum model satisfying the volume constraint.

Funder

Hrvatska Zaklada za Znanost

OeAD-GmbH

Austrian Science Fund

Vienna Science and Technology Fund

Erwin Schrödinger International Institute for Mathematics and Physics

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Engineering,Modeling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3